Golimumab Preserves β Cell Function and Reduces Insulin Use in Children and Young Adults With Recently Diagnosed Type 1 Diabetes: The Phase 2 T1GER Study

Teresa Quattrin,¹ Michael J. Haller,² Andrea K. Steck,³ Eric I. Felner,⁴ Yinglei Li,⁵ Yichuan Xia,⁵ Jocelyn H. Leu,⁵ Ramineh Zoka,⁶ Joseph A. Hedrick,⁶ Mark R. Rigby,⁶ Frank Vercruysse⁷

¹Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and JR Oishei Children's Hospital Diabetes Center, Buffalo, NY, USA; ²Department of Pediatrics, University of Florida, Gainesville, FL, USA; ³Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; ⁴Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta, GA, USA; ⁵Janssen Research & Development, LLC, Spring House, PA, USA; ⁶Janssen Research & Development, LLC, Horsham, PA, USA; ⁷Janssen Research & Development, Beerse, Belgium.

This presentation was supported by Janssen Research & Development, LLC.

Presenter Disclosure

Teresa Quattrin, MD

Consultant: Janssen Research & Development

<u>Clinical Trial, Principal Investigator at the Buffalo site</u>: Janssen, Provention Bio, Inc., OPKO Biologics Ltd., and Ascendis

This study was sponsored by Janssen Research & Development, LLC. Medical writing support was provided by Dana Tabor, PhD, and Alaina Mitsch, PhD, of MedErgy, and was funded by Janssen Global Services, LLC.

Background

- T1D is an autoimmune condition characterized by the progressive loss of pancreatic β cells
- T1D onset is often more acute and severe in children than in adults^{1,2}
- There are no approved disease-modifying therapies for T1D
- TNFα is a proinflammatory cytokine affecting T1D initiation and progression and resulting in β cell stress and dysfunction
- Golimumab is a human IgG1κ monoclonal antibody specific for TNFα
 - Approved for the treatment of other autoimmune diseases (e.g., RA, UC, nr-axial SpA), including some in children as young as 2 years of age (e.g., polyarticular juvenile idiopathic arthritis)^{3,4}

Objective

 To determine if golimumab preserves β cell function and improves diabetes-related clinical and metabolic parameters in children and young adults with newly diagnosed stage 3 T1D

T1D, type 1 diabetes; TNFα, tumor necrosis factor α; RA, rheumatoid arthritis; UC, ulcerative colitis; nr-axial SpA, non-radiographic axial spondyloarthritis.

^{1.} Chiang JL, et al. *Diabetes Care*. 2014;37(7):2034-2054.

^{2.} Kuhtreiber WM, et al. *Diabet Med*. 2015;32(10):1346-1353.

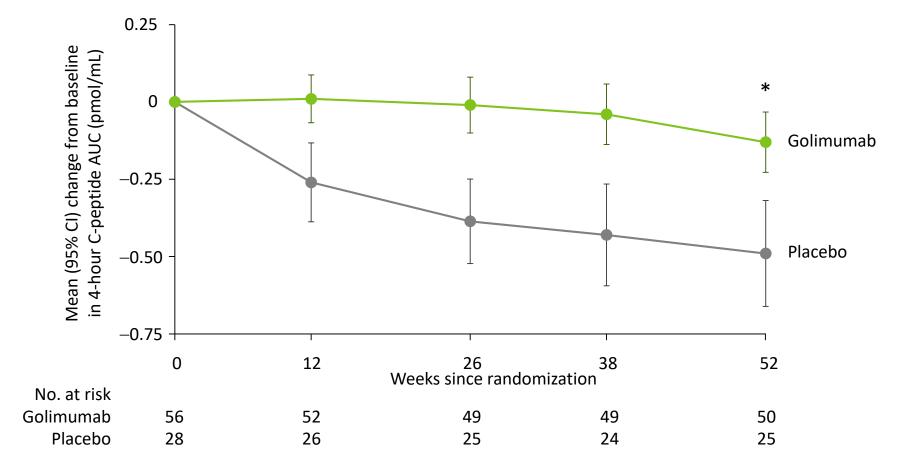
^{3.} SIMPONI (golimumab) injection, for subcutaneous use [package insert]. Horsham, PA: Janssen Biotech, Inc.; 2019.

^{4.} SIMPONI (golimumab) [European Summary of Product Characteristics]. Leiden, The Netherlands; Janssen Biologics B.V.; 2019.

Study Design and Analyses: Phase 2a Study

- Participants were randomized (2:1) to 52 weeks of treatment with SC golimumab or placebo
 - Induction dose of golimumab (<45 kg: 60 mg/m² or ≥45 kg: 100 mg) at Weeks 0 and 2
 - Maintenance dose of golimumab (<45 kg: 30 mg/m² or ≥45 kg: 50 mg) at Week 4 and every 2 weeks thereafter
- Eligibility criteria included: age 6 to 21 years, T1D diagnosed according to ADA criteria, peak C-peptide level ≥0.2 pmol/mL following a 4-hour MMTT, and randomization within 100 days of diagnosis
 - Participants were to follow the ADA guidelines for HbA1c target¹
- Primary outcome: 4-hour MMTT C-peptide AUC at Week 52
- Secondary endpoints included:
 - Change from baseline in HbA1c at Week 52
 - Change from baseline in insulin use at Week 52
 - Hypoglycemic event rates (BG ≤70 mg/dL irrespective of clinical symptoms and all events of severe hypoglycemia)*
- Other endpoints included:
 - Change from baseline in 4-hour C-peptide AUC over time
 - Responder analyses
 - Proinsulin/C-peptide ratio over time
- Efficacy and safety analyses were performed on all participants who received ≥1 dose of study drug (ITT)

SC, subcutaneous; ADA, American Diabetes Association; MMTT, mixed-meal tolerance test; AUC, area under the concentration-time curve; ITT, intention-to-treat; BG, blood glucose. *In addition, post hoc analyses evaluated hypoglycemic event rates by ADA level: Level 1: BG 54-<70 mg/dL; Level 2: <54 mg/dL; Level 3: severe cognitive impairment requiring external assistance for recovery.


1. Chiang JL, et al. Diabetes Care. 2014;37(7):2034-2054

Baseline Characteristics

Characteristic	Golimumab (n = 56)	Placebo (n = 28)
Mean (SD) age, years	14 (4)	14 (4)
6-11 years	36%	29%
12-17 years	48%	46%
18-21 years	16%	25%
Male	55%	64%
Mean (SD) body weight, kg	56 (20)	58 (24)
Mean (SD) days from T1D diagnosis to randomization	74 (20)	75 (19)
Mean (SD) HbA1c, %	7.0 (1.1)	7.1 (1.2)
Mean (SD) daily insulin use, U/kg/day	0.42 (0.26)	0.44 (0.20)
Mean (SD) C-peptide AUC, pmol/mL	0.78 (0.40)	0.88 (0.63)

Effects on 4-hour C-peptide AUC

- The study met its primary endpoint
- Mean 4-hour C-peptide AUC at Week 52 was
 0.64 pmol/mL in the golimumab group and
 0.43 pmol/mL in the placebo group (*P* < 0.001)
- All sensitivity analyses were consistent with the primary analysis

CI, confidence interval.

**P* <0.001. *P* values were calculated based on a mixed model for repeated measures with post-baseline log(AUC+1) as the response variable, gender, treatment, time, and treatment-by-time interaction as categorical effects, as well as baseline, baseline-by-time, and age as covariates. The baseline value was in log(AUC+1) scale.

HbA1c, Insulin Use, and Hypoglycemic Events

	Golimumab (n = 56)	Placebo (n = 28)	Multiplicity adjusted <i>P</i> value*
HbA1c, %			
LS mean change (SE) from baseline at Week 52	0.47 (0.21)	0.56 (0.29)	
Difference for golimumab vs placebo (95% CI)	-0.09 (-0.81, 0.63)		0.80
Insulin use, U/kg/day			
LS mean change (SE) from baseline at Week 52	0.07 (0.03)	0.24 (0.04)	
Difference for golimumab vs placebo (95% CI)	-0.18 (-0.27, -0.08)		0.001
Mean (SD) hypoglycemic events ⁺ from baseline to Week 52	38 (36)	43 (34)	
Rate ratio (95% CI)	0.90 (0.0	63, 1.29)	0.8

In participants <18 years of age, a post hoc analysis showed a 36% reduction in ADA Level 2 hypoglycemic events (BG <54 mg/dL).

LS, least squares; SE, standard error. *Hochberg approach is applied within secondary endpoint analyses. [†]Defined as biochemically confirmed BG ≤70 mg/dL irrespective of symptoms and all events of severe hypoglycemia.

Additional Prespecified Analyses

Proportion of Responders by Treatment

Golimumab Placebo Golimumab Placebo 60 40 35 proinsulin/C-peptide ratio (%) 50 30 Median (IQR) fasting Participants (%) 42.9% 41.1% 40 25 20 30 28.6% 15 20 10 10 10.7% 5 7.1% 3.6% 0 0 12 26 38 52 0 C-peptide Partial remission C-peptide and responders* responders⁺ partial remission Weeks since randomization No. at Risk responders[‡] Golimumab 55 52 48 48 47 26 25 Placebo 28 24 24

Fasting Proinsulin/C-peptide Ratio[§]

IQR, interquartile ratio.

*Defined as having an increase or minimal decrease in C-peptide AUC ≤5% from baseline. [†]Defined as having an insulin dose-adjusted A1c remission score ≤9 at Week 52. [‡]Defined as meeting criteria for both C-peptide and partial remission responders. [§]The C-peptide and proinsulin levels were assessed at Northwest Lipid Metabolism and Diabetes Research Laboratory (Seattle, WA) using 2-site immuno-enzymometric assays and radioimmunoassay kits (Millipore Inc.), respectively.

¹¹At Week 52, the 95% Hodges-Lehmann Cl of median difference = (0.064, 0.184).

Adverse Events

	Golimumab (n = 56)	Placebo (n = 28)
≥1 AE	91%	82%
≥1 serious AE*	2%	4%
≥1 AE leading to discontinuation	4%	0%
≥1 AE related to study drug	43%	43%
≥1 infection	71%	61%
Serious infection	0%	0%
Hypoglycemia	23%	7%
Diabetic ketoacidosis	0%	0%
≥1 injection site reaction	23%	29%
New or worsening autoimmune disease	0%	4%

 Hypoglycemic events were reported as AEs at the investigator's discretion. Seven of the 13 golimumab hypoglycemia AEs were from a single site reporting hypoglycemia AEs in all participants (including 2 in the placebo group); the other 6 hypoglycemia AEs were from 5 different sites

AE, adverse event. *One serious AE was reported in each treatment group; neither was related to study treatment nor led to study or study drug discontinuation.

Conclusions

- In this phase 2a study in children and young adults with newly diagnosed stage 3 T1D, golimumab preserved endogenous insulin production and reduced exogenous insulin requirements
- Both groups had good treat-to-target glycemic control, and the change from baseline in HbA1c did not differ significantly between groups
- In a post hoc analysis, ADA Level 2 hypoglycemic episodes (BG <54 mg/dL) were lower in the pediatric population
- Compared to placebo, the golimumab group had a higher percentage of participants with C-peptide increase or minimal loss and were in partial remission while experiencing little or no increase in proinsulin/C-peptide ratio over time. These findings suggest that golimumab may be arresting disease progression for a large subset of patients
- This study used a novel T1D-specific dosing regimen for golimumab, which had a favorable safety
 profile consistent with regimens used previously, without any serious infections in either group
- These results support golimumab as a potential disease-modifying therapy for T1D